χ ( 2 ) and χ ( 3 ) harmonic generation at a critical power in inhomogeneous doubly resonant cavities
نویسندگان
چکیده
We derive general conditions for 100% frequency conversion in any doubly resonant nonlinear cavity, for both secondand third-harmonic generation via χ (2) and χ (3) nonlinearities. We find that conversion efficiency is optimized for a certain “critical” power depending on the cavity parameters, and assuming reasonable parameters we predict 100% conversion using milliwatts of power or less. These results follow from a semi-analytical coupled-mode theory framework which is generalized from previous work to include both χ (2) and χ (3) media as well as inhomogeneous (fully vectorial) cavities, analyzed in the high-efficiency limit where down-conversion processes lead to a maximum efficiency at the critical power, and which is verified by direct finite-difference time-domain (FDTD) simulations of the nonlinear Maxwell equations. Explicit formulas for the nonlinear coupling coefficients are derived in terms of the linear cavity eigenmodes, which can be used to design and evaluate cavities in arbitrary geometries. © 2007 Optical Society of America OCIS codes: (190.2620) Nonlinear optics: frequency conversion; (230.4320) Nonlinear optical devices References and links 1. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation I: Semiclassical theory,” Optica Acta. 27(3), 321–335 (1980). 2. L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” JOSA-B 4, 1465–1476 (1987). 3. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993). 4. R. Paschotta, K. Fiedler, P. Kurz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. Lett. 58, 117 (1994). 5. V. Berger, “Second-harmonic generation in monolithic cavities,” J. Opt. Soc. Am. B 14, 1351 (1997). 6. I. I. Zootoverkh, K. N. V., and E. G. Lariontsev, “Enhancement of the efficiency of second-harmonic generation in microlaser,” Quantum Electron. 30, 565 (2000). 7. B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B 22, 1378 (2005). 8. M. Liscidini and L. A. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016,613 (2006). 9. Y. Dumeige and P. Feron, “Wispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” PRA 74, 063,804 (2006). 10. G. T. Moore, K. Koch, and E. C. Cheung, “Optical parametric oscillation with intracavity second-harmonic generation,” Opt. Commun. 113, 463 (1995). #80355 $15.00 USD Received 23 Feb 2007; revised 22 May 2007; accepted 23 May 2007; published 31 May 2007 (C) 2007 OSA 11 June 2007 / Vol. 15, No. 12 / OPTICS EXPRESS 7303 11. M. Liscidini and L. A. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883 (2004). 12. L. Fan, H. Ta-Chen, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, J. Hader, A. R. XZakharian, J. Moloney, S. W. Koch, and W. Stolz, “Tunable watt-level blue-green vertical-external-cavity surface-emitting lasers by intracavity frequency doubling,” Appl. Phys. Lett. 88, 2251,117 (2006). 13. P. Scotto, P. Colet, and M. San Miguel, “All-optical image processing with cavity type II second-harmonic generation,” Opt. Lett. 28, 1695 (2003). 14. G. McConnell, A. I. Ferguson, and N. Langford, “Cavity-augmented frequency tripling of a continuous wave mode-locked laser,” J. Phys. D: Appl.Phys 34, 2408 (2001). 15. G. S. Dutta and J. Jolly, “Third harmonic generation in layered media in presence of optical bistability of the fundamental,” Pramana J. Phys. 50, 239 (1988). 16. G. D. Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Generalized coupled-mode theory for χ(2) interactions in finite multi-layered structures,” J. Opt. Soc. Am. B 19, 2111–2122 (2002). 17. A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. E 65, 085,106 (2002). 18. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzeti, L. C. Andreani, F. Romanato, L. Businaro, E. D. Fabrizio, A. Passaseo, and M. D. Vittorio, “Resonant second-harmonic generation in a GaAs photonic crystal waveguide,” Phys. Rev. B 68, 161,306 (2003). 19. S. Pearl, H. Lotem, and Y. Shimony, “Optimization of laser intracavity second-harmonic generation by a linear dispersion element,” J. Opt. Soc. Am. B 16, 1705 (1999). 20. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, and A. P. Shkurinov, “Enhancement of sum frequency generation near the photonic band edge under the quasiphase matching condition,” Phys. Rev. E 63, 046,609 (2001). 21. G. D. Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidavovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E 64, 016,609 (2001). 22. A. H. Norton and C. M. de Sterke, “Optimal poling of nonlinear photonic crystals for frequency conversion,” Opt. Lett. 28, 188 (2002). 23. J. A. Armstrong, N. loembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). 24. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966). 25. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6, 215–223 (1970). 26. A. I. Gerguson and M. H. Dunn, “Intracavity second harmonic generation in continuous-wave dye lasers,” IEEE J. Quantum Electron. 13, 751–756 (1977). 27. M. Brieger, H. Busener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981). 28. J. C. Berquist, H. Hemmati, and W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982). 29. W. J. Kozlovsky, W. P. Risk, W. Lenth, B. G. Kim, G. L. Bona, H. Jaeckel, and D. J. Webb, “Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser,” Appl. Phys. Lett. 65, 525–527 (1994). 30. G. J. Dixon, C. E. Tanner, and C. E. Wieman, “432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity,” Opt. Lett. 14, 731–733 (1989). 31. M. J. Collet and R. B. Levien, “Two-photon loss model of intracavity second-harmonic generation,” PRA 43(9), 5068–5073 (1990). 32. M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990). 33. K. Schneider, S. Schiller, and J. Mlynek, “1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser,” Opt. Lett. 21, 1999–2001 (1996). 34. X. Mu, Y. J. Ding, H. Yang, and G. J. Salamo, “Cavity-enhanced and quasiphase-matched mutli-order reflectionsecond-harmonic generation from GaAs/AlAs and GaAs/AlGaAs multilayers,” Appl. Phys. Lett. 79, 569 (2001). 35. J. Hald, “Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear cystal: theoretical considerations,” Opt. Commun. 197, 169 (2001). 36. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, “Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals,” J. Opt. Soc. Am. B 19, 2129 (2002). 37. T.-M. Liu, C.-T. Yu, and C.-K. Sun, “2 Ghz repetition-rate femtosecond blue sources by second-harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86, 061,112 (2005). 38. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, “Enchanced second-harmonic generation #80355 $15.00 USD Received 23 Feb 2007; revised 22 May 2007; accepted 23 May 2007; published 31 May 2007 (C) 2007 OSA 11 June 2007 / Vol. 15, No. 12 / OPTICS EXPRESS 7304 in AlGaAs/AlxOy tightly confining waveguides and resonant cavities,” OL 31(24), 3626–3630 (2006). 39. A. Di Falco, C. Conti, and G. Assanto, “Impedance matching in photonic crystal microcavities for secondharmonic generation,” Opt. Lett. 31, 250 (2006). 40. H. Schnitzler, U. Fröhlich, T. K. W. Boley, A. E. M. Clemen, J. Mlynek, A. Peters, and S. Schiller, “All-solidstate tunable continuous-wave ultraviolet source with high spectral purity and frequency stability,” Appl. Opt. 41, 7000–7005 (2002). 41. F.-F. Ren, R. Li, C. Cheng, and H.-T. Wang, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” PRB 70, 245,109 (2004). 42. K. Koch and G. T. Moore, “Singly resonant cavity-enhanced frequency tripling,” J. Opt. Soc. Am. B 16, 448 (1999). 43. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett. 92(083903) (2004). 44. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. pp. 13–15 (1993). 45. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995). 46. R. W. Boyd, Nonlinear Optics (Academic Press, California, 1992). 47. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1998). 48. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989). 49. N. Hashizume, M. Ohashi, T. Kondo, and R. Ito, “Optical harmonic generation in multilayered structures: a comprehensive analysis,” J. Opt. Soc. Am. B 12, 1894–1904 (1995). 50. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984). Ch. 7. 51. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004). 52. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983). 53. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Butterworth-Heinemann, Oxford, 1977). 54. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984). 55. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Rapid Commun. 66, 055,601(R) (2002). 56. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Norwood, MA, 2000). 57. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Burr, J. D. Joannopoulos, and S. G. Johnson, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). 58. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625 (1997). 59. M. F. Yanik, S. Fan, M. Soljačić, , J. D. Joannopoulos, and Yanik, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 68, 2506 (2004). 60. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001). 61. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, “Nonlinear refractive-index and two-photon absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993). 62. Q. Xu and M. Lipson, “Carrier-induced optical bistability in Silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2005). 63. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
منابع مشابه
High-efficiency second-harmonic generation in doubly-resonant χ(²) microring resonators.
By directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure consisting of a microscale doubly-resonant ring resonator side-coupled to two adjacent waveguides. We find that ≳ 94% conversion efficiency can be attained at telecom wavelengths, f...
متن کاملNonlinear harmonic generation and devices in doubly resonant Kerr cavities
We describe a theoretical analysis of the nonlinear dynamics of third-harmonic generation →3 via Kerr 3 nonlinearities in a resonant cavity with resonances at both and 3 . Such a doubly resonant cavity greatly reduces the required power for efficient harmonic generation, by a factor of V /Q2, where V is the modal volume and Q is the lifetime, and can even exhibit 100% harmonic conversion effici...
متن کاملSingle-photon blockade in doubly resonant nanocavities with second-order nonlinearity
We propose the use of nanostructured photonic nanocavities made of χ (2) nonlinear materials as prospective passive devices to generate strongly sub-Poissonian light via single-photon blockade of an input coherent field. The simplest scheme is based on the requirement that the nanocavity be doubly resonant, i.e., possess cavity modes with good spatial overlap at both the fundamental and second-...
متن کامل1 1 A pr 2 00 0 Second - harmonic interferometric spectroscopy of the buried Si ( 111 ) - SiO 2 interface
The second-harmonic interferometric spectroscopy (SHIS) which combines both amplitude (intensity) and phase spectra of the second-harmonic (SH) radiation is proposed as a new spectroscopic technique being sensitive to the type of critical points (CP's) of combined density of states at semiconductor surfaces. The increased sensitivity of SHIS technique is demonstrated for the buried Si(111)-SiO ...
متن کامل0 Double resonant processes in χ ( 2 ) nonlinear periodic media
In a one-dimensional periodic nonlinear χ (2) medium, by choosing a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of slowly varying envelope approa...
متن کامل